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Abstract— Automated satellite docking is a prerequisite for
most future in-orbit servicing missions. Most vision-based
solutions proposed use conventional cameras. However, con-
ventional cameras face challenges due to extreme illumination
conditions. Event cameras have been used in various applica-
tions because of their advantages over conventional cameras,
such as high temporal resolution, higher dynamic range, low
power consumption, and higher pixel bandwidth. This paper
presents a hardware setup to simulate low earth orbit (LEO)
conditions. The setup aims to show the suitability of event-based
cameras for satellite docking applications. The developed test
environment has lighting conditions similar to LEO, a mock-
up satellite’s docking port following Lockheed Martin’s Mission
Augmentation Port standard, and a robotic arm that can move
the mock-up satellite to replicate movements in space. This
paper shows the drawbacks faced by traditional cameras in
LEO conditions, such as pixel saturation, resulting in feature
loss. To overcome these limitations, this paper presents a port
detection pipeline using event-based cameras. The proposed
pipeline detects the docking port with an average error of 8.58
pixels in image space. This error compared to the image width
and height is 2.48% and 3.30% respectively. Therefore, the
proposed method provides promising results towards satellite
docking using event cameras in the LEO environment where
illumination conditions are challenging.

I. INTRODUCTION

Satellite docking is a key component for in-orbit ser-

vicing missions like refuelling, diagnostics, de-orbiting or

component replacement. To dock to a satellite in space, one

spacecraft must match the orbital parameters of another and

successfully rendezvous. Our research is currently focused on

detecting and tracking a docking port to develop a navigation

and control system for satellite docking. In space, standard

cameras are limited by illumination conditions, ranging from

intense direct illumination to full shadow. We discuss the

suitability of event cameras [1] for satellite docking under

these conditions, leveraging the high dynamic range of event

sensors.

Moreover, this work presents the hardware simulation

environment developed to simulate low earth orbit (LEO)

illumination conditions over a mock-up satellite’s docking

port following Lockheed Martin’s Mission Augmentation

Port standard [2]. Fig. 1 shows an image of the proposed

hardware test-bench. Given this LEO simulated setup, we

show the use of event-based camera data to overcome the
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Fig. 1. LEO test bench demonstrating the location of key hardware. Our
satellite analogue is mounted to the end of a UR5e robotic arm in front
of a DAVIS 346 event camera. We use an Aputure LS1200D to simulate
sunlight, and three Aputure P60c panel lights with diffusers to simulate
Earthshine.

limitations of standard cameras. We propose a pipeline

that processes accumulated event data to detect the centre

of the docking port in an image generated from events.

The proposed system is a step towards semi-autonomous

docking using event cameras. This system will leverage the

advantages of event cameras including minimal motion blur,

low latency, low power consumption and high dynamic range

imaging [3] within the orbital environment.

II. LITERATURE REVIEW

Compared to standard cameras that capture images at a

fixed frame rate, event cameras measure changes to individ-

ual pixel brightness asynchronously and provide a stream of

events that include time, location and sign of the brightness

change [4]. Event cameras have properties like high temporal

resolution, high dynamic range, low power consumption, and

high pixel bandwidth [4]. Therefore, event cameras have

a high potential in robotics and vision scenarios that are

challenging for standard cameras, such as high-speed, low-

latency and higher dynamic range [4]. Applications of event

cameras include object tracking [5], gesture recognition [6],

stereo vision [7], simultaneous localisation and mapping

(SLAM) [8] and optical flow [9].

Event cameras have previously been used in space-related



applications. Samya et al. [10] used event cameras to track

stars, making tracking more energy-efficient and faster. Event

cameras have also been used in space situational awareness

(SSA), which detects and tracks objects in orbit around the

earth [3]. In SSA, using event cameras provides a high dy-

namic range, high-speed and low-power sensor [11]. Moshi

et al. [12] used event cameras for close proximity satellite

pose detection and demonstrated that event cameras provide

a promising solution to generalise from the simulation to the

target domain under extreme illumination changes.

Illumination conditions in space are challenging mainly

because of the sunlight exposure and reflective surfaces of a

satellite, which creates reflections, saturation, and missing

detection. This is coupled with deep shadows associated

with a lack of ambient illumination. Nassir et al. [13] used

standard cameras, edge-based tracking and model matching

for vision-based localisation for in-orbit servicing. With de-

tection and tracking methods, they used a monocular camera

for mid-range tracking 5m to 20m and a stereo camera

at close-range 0.5m to 5m. This testing was carried out

in the European Proximity Operations Simulator (EPOS), a

ground simulation able to create sunlight conditions using

high-power floodlights, satellite appearance using multi-layer

insulation sheets, as well as orbital motion trajectories [13].

LiDAR and thermal camera-based approaches have been

used for autonomous docking applications [14]. This system

was tested on the space shuttle Discovery during the STS-

128 mission to the International Space Station. Geometric

data captured by point clouds has been used to match against

the previously known shape of the target object to compute

its position and orientation [14]. The main advantage of this

system is that it is lighting immune and has the capability

to automatically rendezvous and dock [14]. Neptec’s Laser

Camera System-LCS [15] is another LiDAR-based system.

However, their higher weight and power consumption are

some of the drawbacks of using LiDAR [13].

III. TEST BENCH FOR SATELLITE DOCKING

A. Test bench setup

The setup of the test bench is shown in Fig. 1. The setup

contains an Aputure LS1200D light capable of producing il-

lumination consistent with sunlight in low earth orbit (LEO).

The walls of the lab are black to reduce stray-light reflection.

A satellite mock-up which includes a scaled-down docking

port is mounted on a UR5e robot. This analogue of a satellite

body has been constructed with Mylar to emulate multi-

layered insulation (MLI) with creases and texture to match

what would be seen in orbit. The mylar is secured with an

epoxy backing, ensuring the texture is repeatable between

trials. The mylar exhibits surface reflectivity similar to a

real satellite, allowing for extreme specular reflections to

be captured by the event camera. The robot arm enables

repeatability of the same trajectory under different illumina-

tion conditions, allowing for pixel level comparisons between

trials. A DAVIS 346 [16] is mounted onto the optical table

for our experiments, however, we note that our approach

generalises to other event camera types, including those
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Fig. 2. Percentage of saturated pixels in RGB frames.

that do not capture intensity frames. This model of event

camera provides both RGB as well as event data, enabling

comparison under the same test conditions in RGB and event

space through the same optical aperture. Camera intrinsic

calibration was performed using the RGB image frames and

checkerboard method. The extrinsic transformation between

the camera and the arm’s end effector is obtained by per-

forming the hand-eye calibration with a checkerboard and

the known kinematics of the UR5e. The final ground truth

of the port pose in the camera’s reference frame leverages

the known CAD model of the satellite mock-up mounted

to the end of the robot arm, along with base-to-end-effector

transformations.

Orbital lighting conditions are extremely challenging be-

cause of the directional sunlight resulting in shadows and

high specularities [17]. Earth’s albedo also provides a source

of diffuse light that can help fill shadows [14]. To replicate

the directional illumination conditions, we position the Apu-

ture LS1200D at a distance of 1.8m from the work area to

produce 130 klmm−2, the intensity of light at a 400 km or-

bit. The parabolic reflector around the light produces a beam

which has minimal divergence, allowing for deep shadowing

to be simulated in the working area. We also utilise three

Aputure P60C panel lights to produce a diffuse, blue-tinted

8178 lmm−2 source to simulate Earthshine, light reflected

from the surface of the Earth. Spacecraft performing orbital

inspection may have lighting fitted on-board to assist with

illumination when behind the Earth, and so we optionally

add in a small colocated Aputure MC panel light source to

simulate a spacecraft-mounted light.

B. Motivation towards event cameras

Event cameras can handle extreme illumination conditions

that inhibit RGB cameras. This occurs in docking scenarios

due to the high-intensity reflection of sunlight from the

satellite surface and causes saturation of RGB camera pixels

in all three channels. An experiment was conducted using the

sunlight source and moving the satellite analogue using the

robot arm in front of the camera. Fig. 2 shows the percentage

of saturated pixels over time in the RGB image during this

experiment. The pixel saturation depends on the relative
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Fig. 3. (a) RGB image with less saturation around the ring region. (b) RGB image with significant saturation around the ring region. (c) Edge detection
on saturated RGB image. (d) Image generated from events (accumulation of 20k events). (e) Result of filtered ring. (f) Result of fitting RANSAC ellipse
(Filled white circles: ends of the major axis and centre. White empty circles: ends of the minor axis).

orientation of the light source, camera and satellite body. For

example, Fig. 3(a) shows the RGB image when there is less

saturation near the docking port. However, Fig. 3(b) shows

how saturation occurs with reflections. In these saturated

situations, it is difficult to detect reliable image features like

edges near the docking port (ring), as shown in Fig. 3(c). In

tracking, and downstream close-proximity operations this can

cause significant issues. However, as shown by accumulating

20,000 events in Fig. 3(d), the event data show the features

of the ring more clearly. This ability of the event camera to

identify features in saturated illumination conditions provides

strong motivation for their use in these situations.

IV. DOCKING PORT DETECTION

The Lockheed Martin Mission Augmentation Port (MAP)

Standard is an open-source mechanical interface for satellites

to dock in orbit [2]. In this work, we use a docking port

modelled on this standard. According to the MAP standard,

there are six stages of docking; approach, host system

preparation for docking, soft capture, hard dock, connection

testing and hand off to host [2]. This work aims to detect

the docking port during the approach stage so that the

orientation and trajectory of the satellite can be determined

to dock successfully. The outer part of the docking port

consists of a reflective circular navigational aid. In this paper,

the detection of this ring is considered to determine the

preliminary orientation of the satellite.

A. Docking port detection pipeline

The aforementioned navigational aid is a reflective planar

ring circling the docking port. This work leverages a light

source collocated with the camera to ensure the maximum

visibility of the ring. Using the standard camera pin-hole

model, the ring projection on the image plane is close to

being an ellipse. Accordingly, the proposed method aims

to estimate the ring pose in the image using the implicit

representation of a conic section

Ax2
+Bxy + Cy2 +Dx+ Ey + F = 0, (1)

with x and y a point in the image plane, and A-F the ellipse

parameters. As illustrated in Fig. 4, the proposed method

consists of three steps:

• Accumulation of event data into image-like histograms,

• Data-driven image filtering with a Convolutional Neural

Network (CNN),

• Ellipse parameter estimate with RANSAC-based fitting.

The first step simply consists of populating a histogram with

each bin corresponding to a pixel in the image plane and

counting the events occurring in each cell regardless of their

polarity. Such an image-like histogram is constructed for

every set of N consecutive events. Unfortunately, due to the

high level of texture and shadows, it is highly challenging

to directly estimate the ellipse parameters. The rest of this

subsection presents the proposed filtering and ellipse fitting

algorithms.

1) Filter learning and training process: With the goal

of satellite-agnostic port detection, the proposed method

leverages a U-Net-like [19] CNN to learn and infer an image

containing only a single ellipse at the location of the ring

projection. It consists of 3 consecutive convolution layers

with ReLU activation functions and max-pooling, followed

by three consecutive deconvolution layers with ReLU acti-

vation. The output is an image I, of the same size as the

input histogram, that is passed through a sigmoid function

to highly the ellipse with ones and setting to zero the rest

of the pixels. The absence of fully connected layers forces

the filter to only consider local information, thus preventing

the network from overfitting by learning the position of
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Fig. 4. Detection pipeline starting from event data to fitting an ellipse (Image source in event histogram: Kaichao You [18]).

Fig. 5. Example of textures used for physical data augmentation for
training. Multiple panels have been created to be affixed around the mock-
up satellite’s docking port or to fully replace the mock-up.

the docking port on the specific mock-up model used for

training.

The training is performed using around 20 minutes of data

with a consumer-grade laptop1. The training data includes

examples with and without the docking port. It includes

“physically-augmented” sequences where various textures

(other than Mylar as shown in Fig. 5) have been affixed to

the mock-up satellite. The training labels are generated by

drawing an ellipse with a thickness of 3 pixels at the known

location of the ring’s projection in the image plane using the

CAD model, the known pose of the arm, and the extrinsic

calibration parameters.

2) Ellipse fitting: The image-like output of the aforemen-

tioned ellipse filter I is binarised according to an arbitrary

threshold. Then a skeletonisation step [20] is performed

to obtain a one-pixel-wide representation of the scene IS .

If no ring is present in the scene, very few pixels are

“ON”/active in the skeletonised image. Accordingly, the

ellipse fitting process is aborted when the number of active

pixels is under a threshold γS . Given enough points in the

skeletonised image, the active pixels are converted into a 2D

point cloud X based on their location in the image. Then

RANSAC-based ellipse fitting is performed: First, selecting

randomly 5 points Xh, the hypothesis ellipse parameters

1Training performed in less than an hour with an Nvidia RTX A500
(mobile) GPU.

Algorithm 1 RANSAC-based ellipse detection/fitting

Input: Filtered-image I, thresholds γF , γS , γI , and γA
Output: Ellipse detection flag e, ellipse parameters p

IB ← binarise(I, γF ) ▷ Binarise image
IS ← skeletonise(IB) ▷ Skeletonise image

e← False
n← 0
if |IS | > γS then ▷ If enough active pixels

X← coordinates(IS)
for i = (0, · · · , N) do ▷ RANSAC fitting

Xh ← randomSelect(X) ▷ Select 5 points
ph ← ellipseParam(Xh) ▷ Hypothesis param.
if axisRatio(pi) > γA then ▷ Check axis ratio

XI ← getInliers(X,ph)
if |XI | > γI and |XI | > n then ▷ If enough inliers

ph = ellipseParam(XI)
e← True
p← ph ▷ Accept hypothesis
n← |XI |

end if
end if

end for
end if
return e, p

ph are estimated by solving a linear system of equations.

To comply with the difference in the number of degrees of

freedom between an ellipse and the conic representation (5

vs. 6), the value of F is set to 1. The number of inliers

for the current hypothesis is computed using ph and all

the points in X if the ratio between the minor over the

major axis of the estimated ellipse is close enough to one

(i.e., > γA). Otherwise, the hypothesis is disregarded. For

successful hypotheses, the ellipse parameters are fitted to

the set of inliers if there are enough of them. This RANSAC

process is repeated N times or until the number of inliers

reaches the number of points in X. The overall process is

illustrated formally in Algorithm 1.

The knowledge of the ellipse parameters enables sub-

sequent estimation steps such as tracking or 6DoF pose

estimation of the docking port in the camera frame. These

tasks will be part of our future work toward autonomous

satellite docking.
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Fig. 6. Percentage of saturated pixels, Pixel Error in RoI vs Frame Number (Image size: 346 x 260 pixels).

B. Experimental results

Fig. 6 shows the experimental results of the detection

pipeline. The red colour plot shows the pixel error (Euclidean

distance error in 2D) between the actual ring centre (com-

puted using the known arm position, the extrinsic calibration

parameters, and the known CAD) and the predicted ring

centre using the proposed pipeline. Cases where the ellipse

cannot be detected due to partial ring filtering are not plotted.

The blue plot shows the percentage of saturated pixels in the

region of interest (RoI). The RoI is the area of the image that

corresponds to the satellite mock-up (eg., in Fig. 3(a), the RoI

contains the full image minus the two black triangles on the

right and bottom-right).

According to these experimental results, when ellipse

detection was possible using event data, the average pixel

error was 8.58, and the maximum error recorded was around

39 pixels. The size of the image frame is 346 by 260. The

percentage of average pixel error compared to image width

and height are 2.48% and 3.30%, respectively. Similarly,

the percentage of maximum error compared to the image

width and height are 11.47% and 15.27%. From these

results, it is possible to conclude that even when pixels

are saturated, event-based docking port detection works.

Conventional cameras are not expected to operate in these

high-illuminated and saturated conditions.

V. CONCLUSIONS

RGB cameras suffer from key shortcomings in satellite

docking applications, mainly owing to extreme illumination

conditions. This paper presents a LEO simulation environ-

ment setup for satellite docking experiments using event

cameras. By using event cameras and the proposed pipeline

in this paper, we demonstrate that it is possible to produce

consistent detection of navigational aids under adverse il-

lumination conditions. The proposed pipeline can be used

to determine the preliminary orientation information of a

standard docking port. Future work will involve temporal

consistency of detection, 6 DoF pose estimation and tracking.
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