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Abstract— In-orbit automated servicing is a promising path
towards lowering the cost of satellite operations and reducing
the amount of orbital debris. For this purpose, we present a
pipeline for automated satellite docking port detection and state
estimation using monocular vision data from standard RGB
sensing or an event camera. Rather than taking snapshots of the
environment, an event camera has independent pixels that asyn-
chronously respond to light changes, offering advantages such
as high dynamic range, low power consumption and latency,
etc. This work focuses on satellite-agnostic operations (only a
geometric knowledge of the actual port is required) using the
recently released Lockheed Martin Mission Augmentation Port
(LM-MAP) as the target. By leveraging shallow data-driven
techniques to preprocess the incoming data to highlight the
LM-MAP’s reflective navigational aids and then using basic
geometric models for state estimation, we present a lightweight
and data-efficient pipeline that can be used independently with
either RGB or event cameras. We demonstrate the soundness
of the pipeline and perform a quantitative comparison of the
two modalities based on data collected with a photometrically
accurate test bench that includes a robotic arm to simulate the
target satellite’s uncontrolled motion.

I. INTRODUCTION

Satellite operations support a wide range of infrastruc-

ture essential to today’s society. First used as scientific,

technological, and military demonstrators during the Cold

War, satellites are now part of our daily life (e.g., telecom-

munication, GPS, etc) and are shown to be valuable tools

for environment monitoring especially in the effort to fight

climate change [1]. Unfortunately, the growing number of

satellites in orbit comes with logistic and obsolescence prob-

lems given the accumulation of debris and decommissioned

satellites. Along with the financial incentive to reduce the

number of rocket launches, there is a growing interest for

in-orbit maintenance of satellites to extend their lifetime and

avoid cluttering orbits. In 2022, Lockheed Martin released

the specification of a docking port [2] to standardise and

facilitate in-orbit servicing. In this paper, we work towards

the adoption of such a standard by addressing the issue of

the Lockheed Martin Mission Augmentation Port (LM-MAP)

detection and state estimation for autonomous docking op-

eration as illustrated in Fig. 1.
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(a) LM-MAP diagram

(c) RGB-based detection (d) Event-based detection

(b) LM-MAP mock-up
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Fig. 1. The proposed method performs the detection and state estimation
of the Lockheed Martin Mission Augmentation Port (LM-MAP) ((a) and
(b)) using standard RGB images (c) or event-based data (d).

While some systems are tested in space [3], [4], algo-

rithmic breakthroughs for autonomous docking or in-orbit

rendezvous heavily rely on the development of software [5]

and physical [6], [7] simulators here on Earth. In [8] the

authors focus on camera-based docking port detection and

localisation with a large-scale (20m) physical simulator that

consists in two industrial robotic arms and a rail system.

In previous work [9], we presented our photometrically

accurate real-world satellite-docking simulator to allow for

the design of novel vision-based perception algorithms. This

test bench allows us to compare the performance of the

proposed algorithm with both RGB and event cameras.

Event cameras, also called neuromorphic cameras [10],

introduced a novel way to acquire “visual” data. Unlike

traditional cameras where all the pixels are triggered simul-

taneously to get a snapshot of the environment, the pixels

of an event camera independently trigger events when the

level of light changes in that pixel. Accordingly, the output

of an event camera consists of an asynchronous stream of

events (timestamp, x and y pixel location, and direction

of change) that display interesting properties such as low

latency, High-Dynamic Range (HDR), absence of motion

blur, etc. Naturally, the robotics community has developed

an increasing number of algorithms over the past decade

to leverage event vision in various applications [11], with

examples for keypoint detection [12], tracking [13], [14],

[15], odometry [16], [17], and SLAM [18].
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While the state of event-based research is not as ma-

ture as the standard camera counterpart, there has already

been a push toward space-oriented uses of event vision.

For example, in [19], [20], [21], and [22] the focus is

the detection and tracking of point object/celestial bodies.

Closer to the proposed work, [23] proposes an approach

to perform satellite state estimation using neural networks

to extract keypoints that can later be associated with their

corresponding vertices in the Computer-Aided Design (CAD)

model. The focus in [23] is closing the domain gap between

simulated and real data. Reducing the “sim-to-real” gap

allows for network training with large amount of data without

the caveat of collecting real-world data.

Outside of event-only spacecraft detection and localisa-

tion, numerous works are based on deep learning as dis-

cussed in a recent survey [24]. Such methods are specifically

trained for particular models of satellite like in [23], where

the satellite’s CAD model is required during training. Thus,

they do not generalise to new targets and require retraining.

Also, this might not be compatible with certain servicing

or deorbiting missions due to alterations or damages to

the satellite during its years of service (potential difference

between the CAD model and the real satellite). Most deep

learning approaches in [24] rely on network models with

millions of parameters possibly making it difficult to deploy

for real-time computation on embedded hardware. Another

interesting approach is the online supervision in [25] with an

adaptive Kalman filter to learn the network parameters while

performing the satellite approach manoeuvres. However, this

method also requires a prior CAD model of the spacecraft.

In this paper, we propose a LM-MAP detection and

monocular state estimation framework that can handle either

standard camera images or event data. The core principle

of our approach is the combination of data-driven and basic

geometric models for data-efficient lightweight estimation.

The data-driven component highlights key features of the

LM-MAP that are the navigation ring and the port reflectors

as seen in Fig. 1. Then, simple geometric models with a

RANndom SAmple Consensus (RANSAC) approach allow

for 6-Degree of Freedom (DoF) estimation of the port’s

pose. The contributions of this work are the design and

implementation of a satellite-agnostic docking port detection

and localisation algorithm, the evaluation of the proposed

framework with both event and RGB data, and the open-

source release of the datasets used in the evaluation.

II. METHOD

A. Overview

Let us consider a camera (RGB or event-based) and a

LM-MAP moving freely in space. The proposed pipeline

aims at detecting the LM-MAP and estimating its 6-DoF

pose in the camera reference frame. As illustrated in Fig. 2,

it relies on a combination of data-driven and model-based

techniques and can handle either event or RGB data sources

independently: Convolutional Neural Networks (CNNs) are

used to filter the camera data by highlighting key components

Camera data

(RGB image or event histogram)

CNN-based image filtering

Highlights the reflective assistive ring

RANSAC ellispse fitting

5 DoFs: 3D pose and normal

vector (two ambiguous solutions)

CNN-based reflector filtering

Highlights the reflective

markers on the docking port

Ambiguity removal and yaw estimation

Maximising the correlation score

between filtered data and CAD

6-DoF pose

Sensor data

Filtered ring image

Fitting success

Filtered reflector image

3D pose,

normal

candidates

Fitting

failure

Fig. 2. Diagram overview of the proposed pipeline for satellite docking port
detection and state estimation. The blue blocks are built upon data-driven
techniques while the red block correspond to geometry-based algorithms.

of the LM-MAP before fitting simple geometric models to

perform pose estimation.

Concretely, images are collected with the camera either

as RGB images or as the accumulation of N events in an

image-like histogram. The sensor data is passed through a

ring filter CNN that highlights the reflective assistive ring

present around the LM-MAP as shown in Fig. 3(a). By

binarising and skeletonising the filtered image, an ellipse

is fitted to the pre-processed sensor data. Analysing the

geometric characteristics of the ellipse given the actual size

of the ring allows for the estimation of 5 DoFs of the

LM-MAP pose: the 3D position in the camera frame and the

direction of the normal vector of the LM-MAP. Note that

the 2 DoFs of the normal vector also present an ambiguity

as two different vectors can explain the observed ellipse. To

solve for the ambiguity and estimate the last DoF of the

LM-MAP’s pose, a second CNN is used to highlight the

three reflective rectangular markers present on the surface

of the LM-MAP. By computing a correlation score between

the filtered image and the projection of a simplistic CAD

model of the LM-MAP, the optimum “yaw” angle around

the normal vector is determined.

B. CNN image filtering

The proposed pipeline can be used either with a single

RGB or event camera. While RGB cameras directly provide

images, the event data stream is not an image-like repre-

sentation suitable for a standard CNN input. Accordingly,

when using an event camera, the raw stream is converted

into a succession of frames that are image-like histograms

in which each bin corresponds to a pixel, and is populated

with the events that occurred at this location (regardless of

their polarity). A total of N consecutive events are used

to generate the histograms (N=35k in our implementation).



CNN-
event

(a) Ring filtering example with event-based input

Event histogram Filtered image IO

CNN-
RGB

(b) Reflector filtering example with RGB input

Standard RGB image Filtered image IR

Fig. 3. Illustration of the ring and reflector CNN-based filters. (a) shows
a ring filtering example with event-based input (N = 35k). (b) shows the
reflector filtering with RGB data.

Fig. 3(a) provides an example of such a histogram.

The filtering of the assistive navigational ring and the

three reflective markers rely on a single CNN architecture.

Similarly, the architecture is the same for RGB and event-

based sensing except for the first layer which has three

channels for RGB data as opposed to only one for event-

based data. As per the goal of performing satellite-agnostic

LM-MAP detection, the proposed pipeline leverages a U-

Net-like [26] CNN to infer mask-like images that highlight

the appropriate LM-MAP features (navigation ring or reflec-

tors) as illustrated in Fig. 3. The chosen architecture consists

of three consecutive convolution layers with ReLU activation

functions and max-pooling, followed by three deconvolution

layers with ReLU activation. The one-channel output image

has the same size as the input image and is passed through

a sigmoid function to provide a mask with values between

zero and one. We denote IO the output of the ring filter and

IR the one of the reflector filter.

The lack of fully connected layers implies that only

local information is used in the filter output. Accordingly,

the proposed network cannot learn the ring position by

“recognising” a certain satellite’s side panel and infer the

LM-MAP position relative to the in-built knowledge of the

specific satellite. By only considering local information our

approach is truly satellite-agnostic and avoids the risk of

overfitting to a closed set of satellites.

C. Ellipse fitting and 5-DoF estimation

As shown in Fig. 3, the proposed pipeline leverages the

reflective ring (navigational aid) that is present around the

LM-MAP to estimate 5 of the 6 DoFs of the LM-MAP pose.

Based on the standard pinhole camera model, the projection

of a 3D circle on the image plane almost matches the shape

of an ellipse. Thus, we propose to use the simple conic

section implicit representation

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 (1)

in 2D to approximate the ring projection in the image

and subsequently perform the 5-DoF estimation of the

LM-MAP’s state.

Concretely, given the ring-filtered image IO we apply

binarisation and skeletonisation [27] to obtain a one-pixel-

wide representation of the scene that we denote IS . The

absence of a ring in the current view results in a very

low number of active pixels in IS . Accordingly, with a

threshold γS , the estimation process is aborted if IS < γS .

Otherwise, the active pixels are converted into 2D points

X ∈ R
2×N , based on their image coordinates, and used in

a RANSAC-based ellipse fitting algorithm to estimate the

parameters eh =
[

A B C D E
]

in (1). Note that

(1) possesses six parameters while an ellipse only has five

DoFs. Thus, the value of F is set as a constant equal to

one. The RANSAC process consists in selecting five points

Xh ∈ R
2×5 and estimating the corresponding hypothetical

ellipse parameters eh by solving a linear problem. From (1),

the conic representation can be converted into a minor/major

axis ellipse representation. After a sanity check on the ratio

between the minor and major axis of the current hypothesis,

the set of inliers from X is computed. The RANSAC process

is repeated H times or until the number of inliers reaches

the number of active pixels in Is. Eventually, the hypothesis

associated with the most inliers is refined using all the inliers

and selected for the rest of the estimation process.

Based on the extremities of the ellipse’s major axis xM1

and xM2 in the image, the 3D position p of the LM-MAP

is estimated as the center of the ring

p =
ν (vM1 + vM2)

∥vM2 − vM1∥
, with v• =

K−1[ x•

1 ]

∥K−1[ x•

1 ]∥
, (2)

K the camera intrinsics matrix, and ν the actual ring radius.

To estimate the normal vector of the LM-MAP, we first

need to find the 3D position x̂m1 and x̂m2 of the ellipse’s

minor axis extremities. Defining x̂m• = dm•vm•, with

dm• the distance between the camera and x̂m•, allows for

the computation of x̂m• by solving the quadratic problem

ν2 = ∥dm•vm• − p∥
2
. Note that there are two solutions

for each of the extremities of the minor axis, one being closer

to the camera than p and one further. However, in practice,

the ring configuration using the furthest solution with xm1 or

the closest solution with xm2 are very similar. Thus, we only

keep the solutions with x̂m• between the camera position

and the ring centre p. Eventually, these correspond to two

different normal vector estimates defined as the cross product

between the ellipse’s major and minor axis in 3D.

D. Yaw estimation

Given the aforementioned 5-DoF estimates, the reflector-

filtered image IR, and a simple CAD model of the LM-MAP,

we remove the “two-normal” ambiguity and estimate the

last DoF of the LM-MAP’s pose by maximising a cor-

relation score between Ir and the hypothetical projection

of the LM-MAP in the camera frame. Formally, assuming

an orientation R (rotation matrix) and previously estimated

position p, a mask-like image IM = π(R,p) is created by

projecting the CAD’s reflective markers on the image plane.
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Fig. 4. Photometrically accurate low earth orbit bench for satellite docking.

Maximising the similarity between IR and IM

R∗ = argmin
R

∑

u,v

π(R,p)[u,v]IR[u,v]
, (3)

provides the final orientation estimate. Thanks to the prior

normal vector estimate, the rotation-based maximisation

problem is reduced to two 1-DoF problems, where the only

unknown is the amount of rotation around the normal vectors.

The low dimension of the search space and the LM-MAP

axial symmetry allow for the use of a simple grid search

between 0 and 120◦ (increments of 1◦ in our implementation)

to solve (3).

III. EXPERIMENTAL SETUP AND DATA GENERATION

A. Test bench setup

Obtaining data and validating the proposed pipeline on

a real satellite in orbit is not practical. To address this

issue, we have developed a photometrically accurate physical

simulator [9] as shown in Fig. 4. The setup consists of a

satellite mock-up mounted on a robotic arm in a dark room

with walls painted in black. The room is equipped with

various light sources to emulate the illumination conditions

of Low Earth Orbit (LEO). One or multiple cameras can

be mounted in the environment with an optional colocated

light source. The motion of the robotic arm simulates free-

floating relative motion between a servicing satellite (camera)

and a target satellite (mock-up with scaled-down LM-MAP).

After performing camera intrinsic and hand-eye calibration,

the test bench provides the ground-truth pose of the mock-up

in the camera reference frame. Accordingly, the CAD model

of the LM-MAP can be overlaid onto the camera data to

generate training data and to compute quantitative metrics in

our experiments.

B. Data generation

We have recorded around two hours of data with an

iniVation Davis 346 across a collection of sequences that

last between 40 seconds and 5 minutes and span a wide

range of trajectories, mock-up appearance, and illumination

conditions. To conduct various analyses in the following

section, we have split the data into four different categories:

1) Augmented textures training: This set contains around

one hour and twenty minutes of data with the LM-MAP

mounted on non-realistic looking satellite mock-ups (c.f.

Fig. 5(a) and (b)). The sequences are collected as a combi-

nation of LM-MAP trajectories and illumination conditions

varying from no light to full sunlighting with earthshine.

(a) Unrealistic cover (b) Unrealistic cover (c) Realistic mock-up

Fig. 5. Example of images from the data collected with our satellite docking
test bench and the Davis 346 RGB/event camera. (a) and (b) are from the
augmented texture training set. (c) is from the realistic training set.

2) Realistic training: Here, around 20 minutes of data

are collected using a realistic satellite mock-up as shown in

Fig. 4 and 5(c). The mock-up is built with Mylar fixed on an

aluminium panel with epoxy to simulate the visual aspect of

multi-layer insulation of real satellites. These data also span

different trajectories and illumination conditions.

3) Realistic test: This set consists of three sequences of

three and a half minutes using the realistic mock-up. Each

sequence is based on the same trajectory which differs from

the ones in realistic training. Only one variable changes from

one sequence to another, the level of light: colocated-only,

colocated with earthshine, colocated with full sun.

4) Hard cases: Two sequences of 40 seconds have been

recorded with the realistic mock-up to show the limits of

RGB and event modalities with the proposed pipeline.

C. CNN training

The proposed CNN-based filters are trained in a supervised

manner using the known robotic arm pose and satellite mock-

up CAD. For each RGB image or event histogram, binary

masks are independently generated for the navigation ring

and the trio of reflectors. We have trained two sets of ring and

reflector filters, one with the augmented textures set only, and

one with the combination of augmented textures and realistic

training sets. We respectively denote these CNN sets as

high-domain-gap and low-domain-gap models. The training

process simply consists of optimising the CNN parameters

using the PyTorch implementation of Adam with a binary

cross-entropy loss function between the model outputs and

the target binary images. The networks possess around 800k

parameters and the training procedure takes less than five

hours on an Nvidia RTX A500 laptop GPU using an 80/20

cut for training and validation sets. Note that we have

not performed any specific hyperparameter training on the

proposed network.

IV. EXPERIMENTAL RESULTS

In this section, we aim at demonstrating the soundness

of the proposed LM-MAP detection and state estimation

pipeline as well as comparing the advantages and drawbacks

of both RGB and event modalities for the task of satellite

docking. In our quantitative experiments, we filter the outlier

state estimates by only considering estimates to be valid

when three consecutive predicted poses are close enough to

one another. Concretely, if the orientation differs by more

than 15◦ between consecutive estimates of R, the current



pose is rejected. Results shown in this section include or not

this simple filtering step as specified.

All our experiments are run in real-time at 10Hz on a

consumer-grade laptop equipped with an Intel i7-1370p CPU

with 32GB of RAM, and an Nvidia RTX A500 (mobile) GPU

with 4GB of VRAM. The typical computation load of the

proposed pipeline consumes around 25% of the CPU, 5% of

the GPU, and 330MB of VRAM. Note that the RANSAC

and yaw estimation codes are naive implementations in

Python (with the latter code being the main computation

bottleneck). Accordingly, an optimised C++ (with or without

GPU parallelisation) would greatly lower the computational

cost of the proposed pipeline, allowing for its use on low-

power embedded systems.

A. Accuracy and generalisation

1) Gap in domain adaptation: This set-up aims to demon-

strate the global accuracy of the proposed pipeline as well

as pointing out the difference between the modalities in

terms of generalisation. Accordingly, we have performed a

quantitative analysis of the framework’s output over the three

sequences of the realistic testing set, and for both the high-

domain-gap and low-domain-gap models, with and without

the aforementioned outlier rejection mechanism. Looking

at the results shown in Table I, one can see that with

the high-domain-gap models and the outlier rejection, both

modalities perform similarly for the low and medium-light

sequences. However, with higher illumination, the event-

based estimation significantly outperforms the RGB-based

one. Given such results, it could seem that the difference in

the cameras’ HDR capabilities is the main explanation for

this empirical observation. To test this hypothesis, we have

run the same experiment using the low-domain-gap models.

As shown on the right of Table I, the RGB and event-based

results display similar levels of accuracy over all the testing

sequences.1 This rejects the HDR difference hypothesis as

the accuracy does not correlate with the sensing modality

when using a higher level of light. Thus, we hypothesise

that using event-based histograms offers better generalisation

abilities than standard RGB data as they are less sensible to

the actual appearance of the mock-up due to their “edge-

detection”-like visual aspect. More precisely, with the low-

light sequences the RGB images in both the augmented

texture and realistic testing sets are quite similar (mostly

dark) but when using high illumination, the appearance

between the two sets differs greatly (larger domain gap).

Thus the high-domain-gap models struggle to generalise

for RGB data. This is not the case for the event-based

histograms as both the high-domain-gap and low-domain-

gap models perform similarly. The domain gap hypothesis

is also favoured by the fact that in these experiments the level

of RGB saturation around the LM-MAP does not correlate,

with the final accuracy.

Another interesting observation is the impact of the simple

outlier rejection mechanism. Regardless of the CNN model

1Additional visualisation at https://youtu.be/SuDh-xhnaVY.
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(a) Realistic testing high light (b) Realistic training high light

[28]-event [28]-RGB Ours-event Ours-RGB [29]-event [29]-RGB

Fig. 6. Accuracy benchmark with Visual Odometry pipelines over two
sequences (a) and (b). The metric is the relative position for various
trajectory lengths (based on [30] with sim3 alignment of the first 40 frames).

or modality, the outlier filtering does effectively improve the

RMSE while having a much lower impact on the median

as expected (meaning that less outliers are present in the

output). An obvious drawback of the outlier filtering is the

decrease in detection rate. Note that we also have tested

the proposed pipeline on datasets that do not contain any

LM-MAP. We have observed only 5 false detections over

more than 5000 processed frames.

2) Visual odometry benchmark: To the best of our

knowledge, there is no off-the-shelf open-source estimation

pipeline that directly addresses the problem at hand. To

provide a benchmark, we chose to compare our method

with common Visual Odometry (VO) frameworks that are

EVO [16] (event-only), OrbSlam3 [28], and SVO [29]. While

our set-up differs from standard VO, the background of our

test bench is close to being featureless. This is especially true

for the event-based tests as no events are generated by the

static background. Thus, the static-environment assumption

of VO is not violated and the estimates correspond to the

relative pose of the camera with respect to the satellite

mock-up. As OrbSlam3 and SVO are designed to operate

with traditional images, we run both frameworks with RGB

images and event frames (histograms of 35k consecutive

events) independently. Overall, EVO has failed on all the

sequences in the realistic testing set (tracking failed after

a couple of seconds during each test). OrbSlam3 and SVO

best performed on the high-light sequence but also suffered

numerous loss of tracking. As illustrated in Fig. 6, OrbSlam3

and SVO can occasionally perform at a similar level to our

method (lowest boundary of the box plots) but the overall

accuracy is not sufficient for satellite docking. For the sake of

fairness, it should be noted that the benchmarked methods are

not designed for photometrically challenging environments

with texture aliasing and rotational symmetries.

3) Theoretical limits of model: In Table I we have demon-

strated the soundness of the proposed estimation pipeline

with various metrics. However, the normal/rotation accuracy

does not seem to be on par with the small position error

obtained across all datasets with both RBG and event-based

modalities. This observation might be surprising due to

the well-known fact that VO pipelines generally estimate

accurately the camera’s orientation with sub-degree precision

thanks to the high sensitivity of the camera measurements

with respect to the camera orientation. Unfortunately, for

https://youtu.be/SuDh-xhnaVY


TABLE I

ACCURACY ANALYSIS OF THE PROPOSED DETECTION AND STATE ESTIMATION PIPELINE USING RGB OR EVENT DATA IN THREE DATASETS WITH

DIFFERENT LEVELS OF ILLUMINATION.

Using high-domain-gap training data Using low-domain-gap training data

Low light Medium light High light Low light Medium light High light
RGB Event RGB Event RGB Event RGB Event RGB Event RGB Event

With outlier filtering

Position error [m] med. 0.011 0.013 0.012 0.016 0.041 0.019 0.009 0.014 0.011 0.014 0.019 0.018
RMSE 0.019 0.019 0.023 0.022 0.054 0.027 0.015 0.021 0.022 0.020 0.028 0.024

Normal error [◦] med. 4.873 5.354 5.616 5.656 8.084 5.656 4.974 5.326 4.979 5.321 5.276 5.682
RMSE 5.797 6.733 7.761 8.061 26.066 7.983 5.807 6.268 6.951 6.230 7.734 7.257

Rotation error [◦] med. 5.719 6.603 6.751 6.939 13.095 7.072 5.968 6.488 6.063 6.742 6.729 7.096
RMSE 9.776 8.498 9.280 10.029 32.440 9.441 9.004 7.513 8.198 8.005 9.588 9.056

Detection rate [%] all 67.4 57.1 42.0 45.0 22.7 39.1 69.3 38.3 54.3 45.9 54.4 31.7
in FoV 86.9 85.5 76.5 80.3 26.6 66.3 89.2 65.4 81.8 84.1 69.9 55.4

Without outlier filtering

Position error [m] med. 0.011 0.014 0.013 0.018 0.049 0.021 0.010 0.015 0.012 0.015 0.021 0.020
RMSE 0.025 0.120 0.031 0.098 0.084 0.064 0.022 0.031 0.039 0.098 0.039 0.083

Normal error [◦] med. 4.936 5.575 5.939 5.776 8.862 6.154 5.021 5.538 5.250 5.512 5.701 6.435
RMSE 10.939 16.505 10.587 19.388 31.570 19.168 10.779 7.851 17.401 11.425 13.196 13.132

Rotation error [◦] med. 6.075 6.994 7.230 7.484 16.887 8.498 6.288 6.872 6.360 7.165 7.472 8.410
RMSE 15.608 18.974 13.206 22.844 38.952 23.549 14.747 10.491 19.461 15.542 17.030 18.213

Detection rate [%] all 82.5 71.9 56.8 62.2 58.3 62.2 84.8 53.8 69.6 61.2 75.1 56.0
in FoV 100 99.6 98.1 99.2 80.1 92.5 100 90.2 99.7 99.4 94.0 87.4

Dataset properties

Saturation of RoI [%]
high 0.0 - 1.7 - 12.1 - 0.0 - 1.7 - 12.1 -
low 55.3 - 23.2 - 0.1 - 55.3 - 23.2 - 0.1 -

total 55.3 - 24.9 - 12.2 - 55.3 - 24.9 - 12.2 -

Ring pose A

Ring pose B

Fig. 7. Illustration of the worst case scenario of measurement sensitivity
with respect to the docking port inclination.

LM-MAP state estimation, we face the opposite situation

where the measurements’ sensitivity is very low. Depending

on the relative pose of the port with respect to the camera, a

large difference in the LM-MAP’s orientation might lead to a

very small variation of measurements. As illustrated in Fig. 7

for the worst case scenario (LM-MAP being fronto-parallel

to the camera), a one-pixel difference in the LM-MAP

appearance at a typical distance of 0.6m can be explained

by an 8.9◦ difference of orientation. When the LM-MAP is

inclined by 45◦ the same pixel noise corresponds to lower a

orientation variation of about 1◦. Accordingly, the proposed

pipeline possesses a lower bound on its rotational accuracy

which is a function of the distance to the camera and the

true orientation. This explains why in Table I the position

RMSEs are still correct without outlier filtering while the

normal and rotation ones are not.

B. Modality limits

With this setup, we briefly expose some of the limitations

of the RGB and event modalities. In Fig. 8 we show samples

from the two sequences, slow motion and full reflect, from

the hard cases dataset. The first one was recorded with

extremely low velocity of the target (1.5mm/s) and solely

the colocated light switched on (no ambient light), while

the second one focuses on a high level of reflection from

the sun-analog light source on the area of the LM-MAP.

With the low-domain-gap models, we obtained a success

rate of ellipse detection of 100% with the RGB data and

(a) Slow motion data

Event histogram

(b) Full reflect data

Standard RGB image

Fig. 8. RGB and event data samples from the two hard cases sequences.

1.16% with the event-based histograms when using the slow

motion sequence. For the full reflect one, it is the opposite

with 0.84% with the RGB data and 79.8% with the events.

As illustrated in Fig. 8, the RGB camera is incapacitated in

the presence of strong reflection due to sensor saturation, and

the event frames suffer from an extremely low signal-to-noise

ratio when the target moves very slowly. Both situations are

common in the context of satellite docking and maintenance

operations. This emphasises the fact that any single modality

is not perfectly fit for our application and that complementing

events with RGB data represents a promising path of more

robust perception in space applications.

V. CONCLUSIONS

We have presented a docking port detection and monocular

state estimation framework that mixes data-driven techniques

(feature filtering) and geometric models (state estimation).

Unlike most existing methods we focused on satellite-

agnostic operations that do not require prior knowledge of

the spacecraft’s CAD model, thus leading to better gener-

alisation abilities without the need to retrain any network.

The performance of the framework was evaluated with real

data from a physical simulator using both RGB and event

cameras. The proposed method despite possessing theoretical

limits demonstrated acceptable levels of accuracy. However,



a conclusion from our experiments is that none of the two

modalities is individually sufficient to ensure robust esti-

mation across all the environmental conditions encountered

during satellite docking operations. Accordingly, future work

will explore the seamless integration of the RGB and event

data to leverage their complementary strengths. We will

also investigate the use of spiking neural networks to better

exploit the spatiotemporal nature of event data.
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